澄迈县40Cr合金钢板汽车用钢,众鑫42crmo冷轧耐磨锰钢板圆钢金属材料有限公司为您提供澄迈县40Cr合金钢板汽车用钢产品案例,联系人:刘经理,电话:18762195566、18762195566,QQ:1500573282,发货地:经济技术开发区大东钢管城。 " />
产品参数 | |
---|---|
产品价格 | 4700 |
发货期限 | 100 |
供货总量 | 3456 |
运费说明 | 当天 |
材质 | 65锰钢板 |
规格 | 1500*4000 |
品牌 | 河钢、敬业 |
切割方式 | 激光加工 |
状态 | 冷轧、热轧、淬火 |
以匠心致初心,秉承着责任与使命,众鑫42crmo冷轧耐磨锰钢板圆钢金属材料有限公司恪守“信誉是根本,质量是生命”的经营理念,以诚实、守信、稳健态度,创新 河北澄迈县65锰冷轧钢板产品研发,严把质量关口,用一颗真诚、感恩之心对待每一位客户。
目前,随着第三代汽车用现金高强65锰钢板的开发,越来越多的高品质中锰钢出现。中锰钢内有大量亚稳奥氏体组织,在变形过程中伴随着相变的发生,能够提高材料的强度和塑性。但目前科研人员大多聚焦在中锰钢成分及组织调控方面,对于中锰钢实际应用鲜有关注。本文基于原位扫描电镜观察,DIC光学实验观察,XRD检测分析及不同应变量样品的透射电镜观察分析研究了5Mn中锰钢单轴拉伸过程中的变形机理,结合观组织表征、力学性能测试和仿真分析,探索中锰钢成形性能、强韧化机理及实际生产可行性。
5Mn中锰钢强塑积可达到30GPa.%以上,基体为铁素体及奥氏体组织,可能存在冷轧及热处理引入的少量板条马氏体,其中奥氏体分为大晶粒和小晶粒两种类型,大晶粒奥氏体稳定性低于小晶粒奥氏体。单轴拉伸过程中,屈服阶段奥氏体向马氏体转变的转变量较少,因此吕德斯应变仅为1%左右(远低于同类中锰钢),屈服结束后较多大晶粒奥氏体发生相变,20%变形后大量小晶粒奥氏体发生相变。由于奥氏体晶粒较小,因此相变产生的可动位错数量适中,产生连续传播的A型PLC带。部分大晶粒奥氏体在变形过程中出现层错,其相变过程为奥氏体—ε马氏体—α’-马氏体。本文通过埃里克森杯突实验,扩孔实验及成形极限实验研究了5Mn中锰钢的成形性能。65mn锰冷轧钢板钢拥有良好的杯突性能,在光洁区域杯突值可达到12mm以上。实验采用激光切割,线切割及冲孔三种预制孔加工工艺研究制孔工艺对扩孔性能的影响,结果显示线切割制孔样扩孔性能 ,激光切割制孔样扩孔性能为稳定,冲孔样由于冲孔过程中局部材料存在相变及加工硬化,因此扩孔性能
传统高65mn锰钢板(Hadfield钢)在室温下能获得单相奥氏体,具有优良的加工硬化能力和抗冲击能力,因此广泛用作冲击载荷下的耐磨材料。然而较低的屈服强度和初始硬度,导致材料在低冲击载荷下不能完全发挥其耐磨性就发生塑性变形,降低了使用寿命。本文设计出一种轻质超高锰钢(Fe-31.6Mn-8.8A1-1.38C),具有低密度、高屈服强度、高初始硬度、良好冲击韧性等特点,适用于低冲击载荷下的磨损条件。通过研究时效处理后的相转变、压缩变形、冲击磨损分析了实验钢的强化机理和磨损机理。
实验钢经1050℃保温1.5h水韧处理后获得单相奥氏体,65锰冷轧钢板时效后奥氏体基体会弥散析出纳米级别的κ’-碳化物,有助于屈服强度和初始硬度。在550℃时效2h综合力学性能65锰钢板佳,与仅水韧处理相比屈服强度提高107.4%,初始硬度提高28.7%,其抗拉强度为1041.7 MPa、屈服强度为1002.7 MPa、断后伸长率为17.6%、冲击韧性(V型缺口)为62 J/cm2和硬度为268.5 HB。随着时效温度升高(550℃~900℃)相转变的顺序为:κ’→纳米-κ’+β-Mn→亚米-κ’+β-Mn+α→纳米-κ’。其中四种类型的κ相析出涉及尺寸、形貌和分布被总结,包括晶内型:纳米-κ’(<50nm),亚米-κ’(>100nm)。
晶间型:κ*(~1μm)。以及片层状κ,存在α+κ群落中。在550℃时效下,纳米-κ’能促进β-Mn沿晶界析出,不需要借助α相;而在700℃和800℃长时间时效下,由于α相的大量析出,其形成主要借助于γ→α反应。通过纳米压痕测试,获得了不同时效温度下基体与析出相的纳米硬度。计算得到理论层错能(SFE)为82.3 mJ/m2,由于平面滑移软化效应,变形模式以位错平面滑动为主,随着变形量的增加,主要的亚结构演变顺序为:平面位错队列→平面位错配置(偶极子和Lomer-Cottrell锁)→泰勒晶格→带。65锰冷轧钢板本研究利用压缩变形,观察到了高层错能下被抑制的形变孪晶以及一种多晶结构。通过分析理论临界孪生应力(σT),当外加应力大于σT,形变孪晶出现。多晶结构内部以位错缠结为主,通过波状滑移形成了位错胞。并提出了多效协同的强化机理:1)位错平面滑移导致滑移带细化和带形成,2)形变孪晶,3)多晶结构。这些形变亚结构的出现共同限制了位错运动,促进基体内位错密度的不均匀,从而增强了应变硬化。低冲击载荷(0.5 J)下,时效后实验65mn锰钢板耐磨性更好,磨损百分比更低(0.55%~0.57%)。
随着预应变量的增加,退火铁素体中的位错密度明显65锰钢板增加,部分稳定性差的大尺寸RA首先发生相变而使得RA量逐渐降低,稳定性逐渐提高;抗拉强度与屈服强度逐渐提高,而断后伸长率则逐渐降低。热轧退火实验钢具有高的氢脆敏感性,随着预应变量的增大,氢脆敏感性逐渐增大,以相对伸长率损失表征的氢脆敏感性指数由未变形样的75.9%提高到15%预应变样的83.2%。充氢样SSRT宏观断口边部存在脆性平台,其断裂机制主要为准解理断裂,且有较多二次裂纹。
65mn冷轧钢板退火实验钢具有超细晶等轴状的退火铁素体+RA复相组织,在预应变过程中发生了TWIP效应和TRIP效应并出现不稳定的中间相ε-马氏体。与热轧退火实验钢类似,预应变能够显著地改变冷轧退火实验钢的力学性能。冷轧退火中锰钢在拉伸过程中出现吕德斯带以及PLC现象。当预应变量等于吕德斯带对应的应变时,即预应变量约为3%时,可以使吕德斯带消失,但预应变对PLC效应则几乎没有影响。这主要与随着预应变量增加,实验钢中位错密度增加、RA稳定性提高、形变诱导马氏体含量增加及形变孪晶的产生等因素有关。对于冷轧退火中锰钢实验料,随着预应变量的增加,充氢试样中的可扩散氢含量显著增加而氢扩散系数降低。与热轧退火实验钢类似,冷轧退火实验钢同样表现出显著的氢脆敏感性,并且随着预应变量的增加,氢脆敏感性逐渐增大。
65锰钢板不同预应变量未充氢样的SSRT断口呈现典型的韧窝韧性断裂特征,而充氢预应变样断口由近表面的脆性沿晶+准解理的混合断裂向心部的韧窝韧性断裂模式逐渐转变。